p53 is not necessary for nuclear translocation of GAPDH during NO-induced apoptosis.

نویسندگان

  • Jum-Ji Kim
  • Mi-Young Lee
چکیده

Aberrant GAPDH expression following S-nitrosoglutathione (GSNO) treatment was compared in HepG2 cells, which express functional p53, and Hep3B cells, which lack functional p53. The results of Western blotting and fluorescent immunocytochemistry revealed that nuclear translocation and accumulation of GAPDH occur in both HepG2 and Hep3B cells. This finding suggests that p53 may not be necessary for the GSNO-induced translocation of GAPDH to the nucleus during apoptotic cell death in hepatoma cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

siah-1 Protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells.

The translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the nucleus has closely been associated with cell death induction. However, the mechanism of this process has not been completely understood. The E3 ubiquitin ligase siah-1 (seven in absentia homolog 1) has recently been identified as a potential shuttle protein to transport GAPDH from the cytosol to the n...

متن کامل

Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH.

There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. C...

متن کامل

Paraquat exposure induces nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the activation of the nitric oxide-GAPDH-Siah cell death cascade.

Paraquat (PQ) is a well-known herbicide that exerts its effects by elevating intracellular levels of superoxide. It has been previously demonstrated that oxidative and nitrosative stress participate to PQ-induced cell death. Here, we document that PQ increases the levels of nitric oxide (NO) in rat mesencephalic cells and causes nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase ...

متن کامل

Glyceraldehyde-3-phosphate dehydrogenase in retinal microvasculature: implications for the development and progression of diabetic retinopathy.

PURPOSE Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been hypothesized as a mediator in the activation of multiple pathways implicated in the pathogenesis of diabetic retinopathy. The objective of this study was to understand the mechanism by which high glucose inactivates GAPDH in retinal microvascular cells. METHODS Bovine retinal endothelial cells (BRECs), transfected with GAPDH, w...

متن کامل

Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death*

Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMB reports

دوره 44 12  شماره 

صفحات  -

تاریخ انتشار 2011